Parking

Parking Infrastructure: A Constraint on or Opportunity for Urban Redevelopment? A Study of Los Angeles County Parking Supply and Growth

Journal of the American Planning Association, 2015, 81(4), pp. 268-286 doi: 10.1080/01944363.2015.1092879

Many cities have adopted minimum parking requirements but we have relatively poor information about how parking infrastructure has grown. We estimate how parking has grown in Los Angeles County from 1900 to 2010 and how parking infrastructure evolves, affects urban form, and relates to changes in automobile travel, using building and roadway growth models. We find that since 1975 the ratio of residential offstreet parking spaces to automobiles in Los Angeles County is close to 1.0 and the greatest density of parking spaces is in the urban core while most new growth in parking occurs outside of the core. 14% of incorporated land in Los Angeles County is committed to parking. Uncertainty in our space inventory is attributed to our building growth model, onstreet space length, and the assumption that parking spaces were created as per the requirements. The continued use of minimum parking requirements is likely to encourage automobile use at a time when metropolitan areas are actively seeking to manage congestion and increase transit use, biking, and walking. Widely discussed ways to reform parking policies may be less than effective if planners do not consider the remaining incentives to auto use created by the existing parking infrastructure. Planners should encourage the conversion of existing parking facilities to alternative uses.

Parking Infrastructure and the Environment

Access Magazine 39, Fall 2011

California is planning to spend $40 billion to build a high speed rail system from San Diego to Sacramento. Advocates argue that high speed rail will save money and improve the environment, while critics claim it will waste money and harm the environment. What accounts for these diametrically opposed views about a technology that has been operating in other countries for decades? And what can transportation analysts offer to inform the debate? Disagreements about the cost and environmental impacts of high speed rail can arise when analysts examine only the most direct effects of the rail system, and compare those to only the direct effects of road and air travel—-the two transportation modes from which high speed rail will likely draw passengers. But transportation energy use and emissions result not only from the direct effects of operating the vehicles but also from indirect effects, such as building the infrastructure, producing the fuels, manufacturing the vehicles, maintaining the system, and disposing of materials at the end of their lives. The full range of emissions from automobile travel, for example, includes not only tailpipe emissions but also the emissions created by building roads and parking garages, manufacturing cars, extracting and refining petroleum, and, finally, wrecking yards and tire dumps. One approach to environmental and cost-benefit analysis that takes both these direct and indirect effects into account is life-cycle assessment. In this article we use life-cycle assessment to compare the energy use and pollution emissions of high speed rail and its competing modes.

Parking Infrastructure: Energy, Emissions, and Automobile Life-cycle Environmental Accounting

Environmental Research Letters, 2010, 5(3), doi: 10.1088/1748-9326/5/3/034001

The US parking infrastructure is vast and little is known about its scale and environmental impacts. The few parking space inventories that exist are typically regionalized and no known environmental assessment has been performed to determine the energy and emissions from providing this infrastructure. A better understanding of the scale of US parking is necessary to properly value the total costs of automobile travel. Energy and emissions from constructing and maintaining the parking infrastructure should be considered when assessing the total human health and environmental impacts of vehicle travel. We develop five parking space inventory scenarios and from these estimate the range of infrastructure provided in the US to be between 105 million and 2 billion spaces. Using these estimates, a life-cycle environmental inventory is performed to capture the energy consumption and emissions of greenhouse gases, CO, SO2, NOX, VOC (volatile organic compounds), and PM10 (PM: particulate matter) from raw material extraction, transport, asphalt and concrete production, and placement (including direct, indirect, and supply chain processes) of space construction and maintenance. The environmental assessment is then evaluated within the life-cycle performance of sedans, SUVs (sports utility vehicles), and pickups. Depending on the scenario and vehicle type, the inclusion of parking within the overall life-cycle inventory increases energy consumption from 3.1 to 4.8 MJ by 0.1–0.3 MJ and greenhouse gas emissions from 230 to 380 g CO2e by 6–23 g CO2e per passenger kilometer traveled. Life-cycle automobile SO2 and PM10 emissions show some of the largest increases, by as much as 24% and 89% from the baseline inventory. The environmental consequences of providing the parking spaces are discussed as well as the uncertainty in allocating paved area between parking and roadways.